The largest interval lying in $\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$ for which the function, $f\left( x \right) = {4^{ - {x^2}}} + {\cos ^{ - 1}}\left( {\frac{x}{2} - 1} \right) + \log \left( {\cos x} \right)$ is defined is
$\left[ { - \frac{\pi }{4},\frac{\pi }{2}} \right)$
$\left[ {0,\frac{\pi }{2}} \right)$
$\left[ {0,\pi } \right]$
$\;\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$
Show that the function $f: R \rightarrow R$ defined as $f(x)=x^{2},$ is neither one-one nor onto.
Given the function $f(x) = \frac{{{a^x} + {a^{ - x}}}}{2},\;(a > 2)$. Then $f(x + y) + f(x - y) = $
The range of $f(x)=4 \sin ^{-1}\left(\frac{x^2}{x^2+1}\right)$ is
The domain of the function $f(x) = \frac{{{{\sin }^{ - 1}}(x - 3)}}{{\sqrt {9 - {x^2}} }}$ is
If domain of function $f(x) = \sqrt {\ln \left( {m\sin x + 4} \right)} $ is $R$ , then number of possible integral values of $m$ is